Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Cell Death Discov ; 7(1): 344, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759279

RESUMO

Macrophages play a vital role in the development of atherosclerosis. Previously, we have found that swiprosin-1 was abundantly expressed in macrophages. Here, we investigated the role of swiprosin-1 expressed in macrophages in atherogenesis. Bone marrow transplantation was performed from swiprosin-1-knockout (Swp-/-) mice and age-matched ApoE-/- mice. Atherosclerotic lesion, serum lipid, and interleukin-ß (IL-ß) levels were detected. In vitro, the peritoneal macrophages isolated from Swp-/- and wild-type mice were stimulated with oxidized low-density lipoprotein (ox-LDL) and the macrophage of foam degree, cellular lipid content, apoptosis, inflammatory factor, migration, and autophagy were determined. Our results showed that swiprosin-1 was mainly expressed in macrophages of atherosclerotic plaques in aorta from ApoE-/- mice fed with high-cholesterol diet (HCD). The expression of swiprosin-1 in the foaming of RAW264.7 macrophages gradually increased with the increase of the concentration and time stimulated with ox-LDL. Atherosclerotic plaques, accumulation of macrophages, collagen content, serum total cholesterol, LDL, and IL-ß levels were decreased in Swp-/- → ApoE-/- mice compared with Swp+/+ → ApoE-/- mice fed with HCD for 16 weeks. The macrophage foam cell formation and cellular cholesterol accumulation were reduced, while the lipid uptake and efflux increased in macrophages isolated from Swp-/- compared to wild-type mice treated with ox-LDL. Swiprosin-1 deficiency in macrophages could inhibit apoptosis, inflammation, migration, and promote autophagy. Taken together, our results demonstrated that swiprosin-1 deficiency in macrophages could alleviate the development and progression of AS. The role of swiprosin-1 may provide a promising new target for ameliorating AS.

2.
Front Pharmacol ; 12: 676589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995108

RESUMO

The α7 nicotinic acetylcholine receptor (α7nAChR) belongs to the superfamily of cys loop cationic ligand-gated channels, which consists of homogeneous α7 subunits. Although our lab found that activation of α7nAChR could alleviate ischemic stroke, the mechanism is still unknown. Herein, we explored whether autophagy is involved in the neuroprotective effect mediated by α7nAChR in ischemic stroke. Transient middle cerebral artery occlusion (tMCAO) and oxygen and glucose deprivation (OGD/R) exposure were applied to in vivo and in vitro models of ischemic stroke, respectively. Neurological deficit score and infarct volume were used to evaluate outcomes of tMCAO in the in vivo study. Autophagy-related proteins were detected by Western blot, and autophagy flux was detected by using tandem fluorescent mRFP-GFP-LC3 lentivirus. At 24 h after tMCAO, α7nAChR knockout mice showed worse neurological function and larger infarct volume than wild-type mice. PNU282987, an α7nAChR agonist, protected against OGD/R-induced neuronal injury, enhanced autophagy, and promoted autophagy flux. However, the beneficial effects of PNU282987 were eliminated by 3-methyladenine (3-MA), an autophagy inhibitor. Moreover, we found that PNU282987 treatment could activate the AMPK-mTOR-p70S6K signaling pathway in the in vitro study, while the effect was attenuated by compound C, an AMPK inhibitor. Our results demonstrated that the beneficial effect on neuronal survival via activation of α7nAChR was associated with enhanced autophagy, and the AMPK-mTOR-p70S6K signaling pathway was involved in α7nAChR activation-mediated neuroprotection.

3.
Ann Transl Med ; 9(6): 509, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33850906

RESUMO

The α7 nicotinic acetylcholine receptor (α7nAChR) has been studied for many years since its discovery. Although many functions and characteristics of brain α7nAChR are widely understood, much remains to be elucidated. The α7nAChR is widely expressed in the central nervous system, not only in neurons but also in astrocytes, microglia, and endothelial cells. α7nAChR can be activated by endogenous agonist like acetylcholine or exogenous agonists like nicotine and PNU282987. Its agonists can be divided into selective agonists and non-selective agonists. The activation of α7nAChR results in a series of physiological processes which have both short-term and long-term effects on cells, for example, calcium influx, neurotransmitter release, synaptic plasticity, and excitatory transmission. It also induces other downstream events, such as inflammation, autophagy, necrosis, transcription, and apoptosis. The cellular responses to α7nAChR activation vary according to cell types and conditions. For example, α7nAChR activation in pyramidal neurons leads to long-term potentiation, while α7nAChR activation in GABAergic interneurons leads to long-term depression. Studies have also shown some contradictory phenomena, which requires further study for clarification. Herein, the cellular responses of α7nAChR activation are summarized, and the functions of α7nAChR in neurons and non-neuronal cells are discussed. We also summarized contradictory conclusions to show where we stand and where to go for future studies.

4.
Acta Pharmacol Sin ; 42(6): 885-897, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33782540

RESUMO

Hypertension is a serious public health problem worldwide. MT-1207, chemically named 3-(4-(4-(1H-benzotriazole-1-yl)butyl)piperazine-1-yl) benzisothiazole hydrochloride, is a new chemical entity that has entered into clinical trial as antihypertensive agent in China. In this paper we report the pharmacological profile of MT-1207 regarding its acute, subacute, and long-term effects on hypertensive animal models, and its actions on isolated organs in vitro as well as its molecular targets. Blood pressure (BP) was measured in conscious animals; amlodipine was taken as a positive control drug. We showed that both single dose of MT-1207 (1.25-20 mg/kg, ig) in spontaneously hypertensive rats (SHR) and MT-1207 (0.25-6 mg/kg, ig) in two-kidney one-clip (2K1C) dogs dose-dependently decreased BP. MT-1207 quickly decreased BP within 5 min after administration; the hypotensive effect lasted for 8 and 12 h, respectively, in SHR and 2K1C dogs without reflex increase in heart rate. Multiple doses of MT-1207 (5 mg · kg-1 · d-1 in SHR; 2 mg · kg-1 · d-1 in 2K1C dogs, for 7 days) significantly decreased BP, slightly reduced heart rate, and both of them recovered after withdrawal. Long-term administration of MT-1207 (10 mg · kg-1 · d-1 for 4 months or more time) produced a stable BP reduction, improved baroreflex sensitivity, reduced renal and cardiovascular damage in SHR, and delayed stroke occurrence and death in stroke-prone SHR. In isolated rat aortic rings precontracted by adrenaline, KCl, noradrenaline or 5-hydroxytryptamine (5-HT), MT-1207 (10-9-10-4 M) caused concentration-dependent relaxation. In a panel of enzyme activity or radioligand binding assays of 87 molecular targets, MT-1207 potently inhibited adrenergic α1A, α1B, α1D, and 5-HT2A receptors with Ki < 1 nM. The antagonism of MT-1207 against these receptors was confirmed in isolated rabbit arteries. We conclude that MT-1207 is a novel and promising single-molecule multitarget agent for hypertension treatment to reduce hypertensive organ damage and stroke mortality.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Tiazóis/uso terapêutico , Triazóis/uso terapêutico , Animais , Anti-Hipertensivos/metabolismo , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cães , Eletrocardiografia/efeitos dos fármacos , Feminino , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/mortalidade , Masculino , Simulação de Acoplamento Molecular , Coelhos , Ratos Endogâmicos SHR , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Acidente Vascular Cerebral/mortalidade , Tiazóis/metabolismo , Triazóis/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/metabolismo , Vasodilatadores/uso terapêutico
5.
CNS Neurosci Ther ; 26(7): 682-697, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32087606

RESUMO

BACKGROUND AND PURPOSE: Cerebral organoids (COs) have been used for studying brain development, neural disorders, and species-specific drug pharmacology and toxicology, but the potential of COs transplantation therapy for brain injury remains to be answered. METHODS: With preparation of traumatic brain injury (TBI) model of motor dysfunction, COs at 55 and 85 days (55 and 85 d-CO) were transplanted into damaged motor cortex separately to identify better transplantation donor for brain injury. Further, the feasibility, effectiveness, and underlying mechanism of COs transplantation therapy for brain injury were explored. RESULTS: 55 d-CO was demonstrated as better transplantation donor than 85 d-CO, evidenced by more neurogenesis and higher cell survival rate without aggravating apoptosis and inflammation after transplantation into damaged motor cortex. Cells from transplanted COs had the potential of multilinage differentiation to mimic in-vivo brain cortical development, support region-specific reconstruction of damaged motor cortex, form neurotransmitter-related neurons, and migrate into different brain regions along corpus callosum. Moreover, COs transplantation upregulated hippocampal neural connection proteins and neurotrophic factors. Notably, COs transplantation improved neurological motor function and reduced brain damage. CONCLUSIONS: This study revealed 55 d-CO as better transplantation donor and demonstrated the feasibility and efficacy of COs transplantation in TBI, hoping to provide first-hand preclinical evidence of COs transplantation for brain injury.


Assuntos
Lesões Encefálicas/terapia , Transplante de Tecido Encefálico/métodos , Células-Tronco Embrionárias/transplante , Transtornos das Habilidades Motoras/terapia , Organoides/transplante , Animais , Lesões Encefálicas/fisiopatologia , Movimento Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Humanos , Masculino , Destreza Motora/fisiologia , Transtornos das Habilidades Motoras/fisiopatologia , Neurogênese/fisiologia , Organoides/fisiologia , Ratos , Ratos Sprague-Dawley
6.
Front Immunol ; 11: 595342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633726

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) underlined the urgent need for alleviating cytokine storm. We propose here that activating the cholinergic anti-inflammatory pathway (CAP) is a potential therapeutic strategy. However, there is currently no approved drugs targeting the regulatory pathway. It is evident that nicotine, anisodamine and some herb medicine, activate the CAP and exert anti-inflammation action in vitro and in vivo. As the vagus nerve affects both inflammation and specific immune response, we propose that vagus nerve stimulation by invasive or non-invasive devices and acupuncture at ST36, PC6, or GV20, are also feasible approaches to activate the CAP and control COVID-19. It is worth to investigate the efficacy and safety of the strategy in patients with COVID-19.


Assuntos
COVID-19/terapia , Síndrome da Liberação de Citocina/terapia , Neuroimunomodulação/imunologia , Estimulação do Nervo Vago/métodos , Nervo Vago/imunologia , Acupuntura , Anti-Inflamatórios/farmacologia , Citocinas/sangue , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Inflamação/terapia , Nicotina/farmacologia , SARS-CoV-2 , Alcaloides de Solanáceas/farmacologia
7.
J Pharmacol Sci ; 140(1): 79-85, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31178326

RESUMO

Bone marrow failure is a disease syndrome with the disability to produce mature blood cells. Pancytopenia is the most common manifestation of bone marrow failure. Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. The Sirt1 heterozygous and wild type mice were exposed to lethal 6.5 Gy 60Co-γ rays. The survival time and hematopoietic indexes were evaluated. The survival time of Sirt1 deficiency mice was significantly decreased. The numbers of platelets (PLT), reticulocytes (RET) and white blood cells (WBC) were significantly decreased. C57BL/6 mice were exposed to 6.5 Gy 60Co-γ rays then administrated with resveratrol (20 mg/kg/d) or vehicle. Resveratrol increased the survival time and protective against irradiation induced hematopoietic damage. Resveratrol also significantly increased the numbers of PLT, RET and WBC of mice. It also increased the hematopoietic area and karyocytes number. In HEK293T cells, the expression of LKB1 was significantly increased in cytoplasm but not in nuclei when treated with resveratrol (50 µM). These results suggest that Sirt1 deficiency might aggravate bone marrow failure. Resveratrol corrected this hematopoietic defect and LKB1 might involve in the protective effect on bone marrow failure.


Assuntos
Raios gama/efeitos adversos , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Pancitopenia/sangue , Pancitopenia/etiologia , Exposição à Radiação/efeitos adversos , Protetores contra Radiação/farmacologia , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Contagem de Leucócitos , Camundongos Knockout , Contagem de Plaquetas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Contagem de Reticulócitos , Sirtuína 1/deficiência , Sirtuína 1/fisiologia , Estimulação Química
8.
J Cell Physiol ; 234(11): 20533-20545, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31026065

RESUMO

The only Food and Drug Administration-approved treatment for acute ischemic stroke is tissue plasminogen activator, and the discovery of novel therapeutic targets is critical. Here, we found orosomucoid (ORM), an acute-phase protein mainly produced by the liver, might act as a treatment candidate for an ischemic stroke. The results showed that ORM2 is the dominant subtype in mice normal brain tissue. After middle cerebral artery occlusion (MCAO), the level of ORM2 is significantly increased in the ischemic penumbra compared with the contralateral normal brain tissue, whereas ORM1 knockout did not affect the infarct size. Exogenous ORM could significantly decrease infarct size and neurological deficit score. Inspiringly, the best administration time point was at 4.5 and 6 hr after MCAO. ORM could markedly decrease the Evans blue extravasation, and improve blood-brain barrier-associated proteins expression in the ischemic penumbra of MACO mice and oxygen-glucose deprivation (OGD)-treated bEnd3 cells. Meanwhile, ORM could significantly alleviate inflammation by inhibiting the production of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α), reduce oxidative stress by improving the balance of malondialdehyde (MDA) and superoxide dismutase (SOD), inhibit apoptosis by decreasing caspase-3 activity in ischemic penumbra of MCAO mice and OGD-treated bEnd.3 cells. Because of its protective role at multiple levels, ORM might be a promising therapeutic target for ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Orosomucoide/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Barreira Hematoencefálica , Linhagem Celular , Células Endoteliais , Glucose/administração & dosagem , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orosomucoide/genética , Estresse Oxidativo , Oxigênio/administração & dosagem , Permeabilidade
9.
Clin Sci (Lond) ; 132(16): 1797-1810, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30006482

RESUMO

There is a pressing need for new approaches to prevent stroke. Endothelial progenitor cells (EPCs) promote vascular repair and revascularization in the ischemic brain. The present study sought to evaluate whether preventive delivery of EPCs could prevent or protect against stroke. Stroke-prone spontaneously hypertensive rats (SHR-SP) received a single injection of EPCs, and their survival time was monitored. In addition, at 28 and/or 42 days after a single injection of EPCs, SHR-SP and mice were subjected to cerebral ischemia, and cerebral ischemic injury, local angiogenesis and in vivo EPC integration were determined. Other experiments examined the effects of EPC conditioned medium, and the distribution of donor EPCs taken from GFP transgenic mice. It was found that EPC-pretreated SHR-SP showed longer lifespans than untreated controls. A single preventive injection of EPCs could produce persistent protective effects against cerebral ischemic injury (lasting at least 42 days), and promote local angiogenesis in the ischemic brain, in two types of animals (SHR-SP and normotensive mice). EPCs of donor origin could be detected in the recipient peripheral blood, and integrated into the recipient ischemic brains. Furthermore, it was suggested that mouse EPCs might exert paracrine effects on cerebral ischemic injury in addition to their direct angiogenic effects. In conclusion, a single preventive injection of EPCs prolonged the lifespan of SHR-SP, and protected against cerebral ischemic injury for at least 7 weeks. It is implied that EPC injection might be a promising candidate for a preventive role in patients at high risk for stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Células Progenitoras Endoteliais/transplante , Longevidade/fisiologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Pressão Sanguínea/efeitos dos fármacos , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Infarto Cerebral/fisiopatologia , Infarto Cerebral/prevenção & controle , Meios de Cultivo Condicionados/farmacologia , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Longevidade/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Análise de Sobrevida
10.
CNS Neurosci Ther ; 24(9): 828-836, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29962085

RESUMO

AIMS: It is unclear whether the impaired BRS plays a key role in the incidence of cardiovascular diseases. The molecular mechanism of impaired BRS remains to be fully elucidated. We hypothesized that selection of rats based on deficient and normal intrinsic BRS would yield models that reflect cardiovascular diseases risk. METHODS AND RESULTS: Twenty generations of selection produced arterial baroreflex low rats and normal rats that differed in BRS by about 2.5-fold change. Metabolic syndrome (including hypertension, overweight, hyperlipemia, and hyperglycemia) emerged in ABR-DRs. Although ABR-DRs consumed less food, they gained significantly more body weight. CONCLUSION: Our study demonstrated that intrinsic low BRS induced hypertension and metabolic disorder. Restoration of impaired BRS might be a potent target of therapeutic intervention in metabolic syndrome.


Assuntos
Animais Geneticamente Modificados/genética , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Síndrome Metabólica/genética , Seleção Artificial/genética , Animais , Feminino , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Síndrome Metabólica/fisiopatologia , Ratos , Ratos Sprague-Dawley
11.
Exp Mol Med ; 50(3): e463, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29869624

RESUMO

Gender differences in fatigue manifest as females being more prone to feel exhaustion and having lower muscle endurance. However, the mechanisms of these effects remain unclear. We investigated whether orosomucoid, an endogenous anti-fatigue protein that enhances muscle endurance, is involved in this regulation. Female rats exhibited lower muscle endurance, and this gender difference disappeared in orosomucoid-1-deficient mice. Female rats also exhibited weaker orosomucoid induction in serum, liver and muscle in response to fatigue compared with male rats. Ovariectomy elevated orosomucoid levels and increased swimming time, and estrogen replenishment reversed these effects. Exogenous estrogen treatment in male and female mice produced opposite effects. Estrogen decreased orosomucoid expression and its promoter activity in C2C12 muscle and Chang liver cells in vitro, and estrogen receptor or p38 mitogen-activated protein kinase blockade abolished this effect. Therefore, estrogen negatively regulates orosomucoid expression that is responsible for the weaker muscle endurance in females.


Assuntos
Estrogênios/farmacologia , Orosomucoide/metabolismo , Receptores de Estrogênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fadiga Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Ovariectomia , Resistência Física/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
12.
Cell Physiol Biochem ; 45(3): 899-916, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29421811

RESUMO

BACKGROUND/AIMS: Podocyte injury, especially podocyte apoptosis, plays a major role in early-stage diabetic nephropathy (DN). Swiprosin-1, also known as EF hand domain containing 2 (EFhd2), is a Ca2+-binding protein in different cell types. However, the function of swiprosin-1 in podocytes remains unknown. METHODS: The expression and distribution of swiprosin-1 were investigated in the mouse renal glomerulus and conditionally immortalized mouse podocyte cell line MPC-5. The expression of swiprosin-1 was also detected in streptozotocin (STZ)-treated mice and MPC-5 cells treated with high glucose (HG). Nephrin and podocin were detected by immunohistochemistry and immunofluroscence. Collagen IV, transforming growth factor-ß (TGF-ß) and fibronectin mRNA expressions were assayed by real-time PCR. Apoptotic proteins and phosphorylation of p38 mitogen-activated protein kinase (MAPK) were detected by immunoblotting. RESULTS: Swiprosin-1 was found to be expressed in podocytes of the mouse glomerulus and MPC-5 cells. Swiprosin-1 expression was increased in STZ-treated mice and MPC-5 cells treated with HG. In Swiprosin-1-/- diabetic mice, kidney/ body weight, urinary albumin, podocyte foot process effacement and glomerular basement membrane thickening were attenuated; the downregulation of nephrin and podocin expression in the glomerulus was inhibited; and the upregulation of collagen IV, TGF-ß and fibronectin mRNA expression in the renal cortex was ameliorated as compared with those in diabetic swiprosin-1+/+ mice. In addition, the increased apoptosis of podocytes, proapoptotic protein expression and p38 phosphorylation in Swiprosin-1-/- diabetic mice were inhibited as compared with those in diabetic swiprosin-1+/+ mice. Knockdown of swiprosin-1 in MPC-5 cells reduced the apoptosis of podocytes, proapoptotic protein expression and p38 phosphorylation induced by HG. Targeted knockdown of p38 attenuated the increased apoptosis of MPC-5 cells over-expressing swiprosin-1. CONCLUSION: Swiprosin-1 expression in podocytes of the mouse glomerulus played a critical role in early-stage DN. Swiprosin-1 deficiency in early DN attenuated mitochondria-dependent podocyte apoptosis induced by hyperglycemia or HG via p38 MAPK signaling pathway.


Assuntos
Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Diabetes Mellitus Experimental/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fibronectinas/genética , Fibronectinas/metabolismo , Glucose/farmacologia , Glomérulos Renais/citologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Podócitos/citologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
13.
Clin Exp Pharmacol Physiol ; 45(6): 514-524, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29193272

RESUMO

This study was designed to investigate the possible synergism of amlodipine and candesartan on the reduction of blood pressure (BP) in hypertensive rats. The end organ protection was also observed. In acute experiment, spontaneously hypertensive rats (SHRs) were treated with intragastric administration of amlodipine (0.5, 1, 2, 3 mg/kg), candesartan (1, 2, 3, 4, 6, 8 mg/kg), and 14 different combinations to find the possible ratio of synergistic interaction. In two kidneys, one clip (2K1C) rats, the effects of amlodipine (1 mg/kg), canderastan (2 mg/kg) and their combination on BP reduction were also observed. In chronic study, SHRs were treated with amlodipine (1 mg/kg), candesartan (2 mg/kg), and their combination for 5 months. Organ damage evaluation was performed after BP recording. The probability sum test (q test) was used to evaluate the synergistic action. There is a synergistic interaction between amlodipine and candesartan on BP reduction. The optimal dose ratio is 1:2. The synergistic effect was also confirmed by 2K1C hypertensive rats. In chronic study, this combination (1:2) possessed an obvious synergism on the reduction of BP and BP variability (BPV) and protection on end organs. Multiple regression analysis showed that heart and aortic hypertrophy indexes and glomerular damage parameters were positively related to BP and BPV. In conclusion, combination of amlodipine and candesartan exhibited a potent antihypertensive effect and possessed an obvious synergism on BP reduction and organ protection in hypertension. The optimal proportion was 1:2. BP and BPV reduction may both importantly contribute to end organ protection.


Assuntos
Anlodipino/efeitos adversos , Anlodipino/farmacologia , Anti-Hipertensivos/efeitos adversos , Anti-Hipertensivos/farmacologia , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Tetrazóis/efeitos adversos , Tetrazóis/farmacologia , Animais , Compostos de Bifenilo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Frequência Cardíaca/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
14.
Sci Rep ; 7(1): 12784, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986538

RESUMO

Acute aortic dissection (AAD) is a catastrophic emergency with high mortality and misdiagnosis rate. We aimed to determine whether circulating microRNAs allow to distinguish AAD from healthy controls and chest pain patients without AAD (CP). Plasma microRNAs expression were determined in 103 participants, including 37 AAD patients, 26 chronic aortic dissection patients, 17 healthy volunteers, 23 patients without AAD. We selected 16 microRNAs from microarray screening as candidates for further testing via qRT-PCR. The results showed that plasma miR-15a in patients with AAD (n = 37) had significantly higher expression levels than it from control group (n = 40; P = 0.008). By receiver operating characteristic curve analysis, the sensitivity was 75.7%; the specificity was 82.5%; and the AUC was 0.761 for detection of AAD. Furthermore, 37 patients with AAD had significantly higher plasma expression levels of let-7b, miR-15a, miR-23a and hcmv-miR-US33-5p compared with 14 CP patients of 40 controls (P = 0.000, 0.000, 0.026 and 0.011, respectively). The corresponding sensitivity were 79.4%, 75.7%, 91.9% and 73.5%, respectively; the specificity were 92.9%, 100%, 85.7% and 85.7%, respectively; and the AUCs of these microRNAs were 0.887, 0.855, 0.925 and 0.815, respectively. These data indicate that plasma miR-15a and miR-23a have promising clinical value in diagnosing AAD.


Assuntos
Dissecção Aórtica/sangue , Dissecção Aórtica/diagnóstico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , MicroRNA Circulante/sangue , Dissecção Aórtica/genética , MicroRNA Circulante/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estabilidade de RNA/genética , Curva ROC , Resultado do Tratamento
15.
CNS Neurosci Ther ; 23(10): 771-778, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28884977

RESUMO

Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics.


Assuntos
Encéfalo/fisiologia , Organoides/fisiologia , Engenharia Tecidual , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Encefalopatias/fisiopatologia , Encefalopatias/terapia , Humanos , Modelos Biológicos , Organoides/efeitos dos fármacos , Organoides/fisiopatologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/fisiologia , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual/métodos
16.
Mediators Inflamm ; 2017: 5950395, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28831209

RESUMO

OBJECTIVES: To examine the expressions of IL-17, IL-22, and IL-23 receptors in four osteoblast models and the effects of IL-17, IL-22, and IL-23 on osteoblasts. METHODS: Gene expression levels of receptors, alkaline phosphatase (ALP), osteocalcin (OCN), and Runt-related transcription factor 2 (Runx-2), were evaluated by RT-PCR and real-time RT-PCR. Proliferative responses and cell cycle analysis were detected by a CCK-8 assay and flow cytometry, respectively. ALP activity and ALP mass were detected by an ALP activity assay and ALP staining, respectively. RESULTS: In primary osteoblasts, only the IL-17 receptor was expressed. In C2C12, MC3T3-E1, and Saos-2 cells, the genes of IL-17, IL-22, and IL-23 receptors were not detectable. None of IL-17, IL-22, and IL-23 had an obvious effect on the proliferation of primary osteoblasts, but IL-17 exhibited an inhibitory effect on the gene expression of ALP, OCN, and Runx-2. The ALP activity and ALP mass of primary osteoblasts were downregulated by IL-17 treatment in a dose-dependent manner, and IL-17 failed to inhibit BMP-2-induced phosphorylation of Smad. CONCLUSION: Primary osteoblasts constitutively express IL-17 receptors, but none of C2C12 cells, MC3T3-E1 cells, and Saos-2 cells express any receptors for IL-17, IL-22, and IL-23. IL-17 inhibits BMP-2-induced osteoblast differentiation via the BMP/Smad-independent pathway.


Assuntos
Ciclo Celular/fisiologia , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Interleucinas/metabolismo , Fosfatase Alcalina/metabolismo , Western Blotting , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Interleucina-17/genética , Interleucina-23/genética , Interleucinas/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Interleucina 22
17.
Front Immunol ; 8: 553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559895

RESUMO

Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to alleviate neuroinflammation. Here, we aimed to determine the role of autophagy in α7nAChR-mediated inhibition of neuroinflammation and its underlying mechanism. Experimental autoimmune encephalomyelitis (EAE) mice and lipopolysaccharide-stimulated BV2 microglia were used as in vivo and in vitro models of neuroinflammation, respectively. The severity of EAE was evaluated with neurological scoring. Autophagy-related proteins (Beclin 1, LC3-II/I, p62/SQSTM1) were detected by immunoblot. Autophagosomes were observed using transmission electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy flux. The mRNA levels of interleukin-6 (IL-6), IL-1ß, IL-18, and tumor necrosis factor-α (TNF-α) were detected by real-time PCR. We used 3-methyladenine (3-MA) and autophagy-related gene 5 small interfering RNA (Atg5 siRNA) to block autophagy in vivo and in vitro, respectively. Activating α7nAChR with PNU282987 ameliorates EAE severity and spinal inflammatory infiltration in EAE mice. PNU282987 treatment also enhanced monocyte/microglia autophagy (Beclin 1, LC3-II/I ratio, p62/SQSTM1, colocalization of CD45- or CD68-positive cells with LC3) both in spinal cord and spleen from EAE mice. The beneficial effects of PNU282987 on EAE mice were partly abolished by 3-MA, an autophagy inhibitor. In vitro, PNU282987 treatment increased autophagy and promoted autophagy flux. Blockade of autophagy by Atg5 siRNA or bafilomycin A1 attenuated the inhibitory effect of PNU282987 on IL-6, IL-1ß, IL-18, and TNF-α mRNA. Our results demonstrate for the first time that activating α7nAChR enhances monocyte/microglia autophagy, which suppresses neuroinflammation and thus plays an alleviative role in EAE.

18.
Acta Pharmacol Sin ; 38(7): 1009-1023, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28414198

RESUMO

Glomerular endothelial cell (GEC) injury plays an important role in the early stage of diabetic nephropathy (DN). Previous studies show that a PKCß inhibitor is effective for treating DN. In the current study we further explored the effects and molecular mechanisms of PKCß inhibitors on GEC apoptosis in DN in streptozotocin-induced diabetic mice in vivo and high glucose- or PMA-treated human renal glomerular endothelial cells (HRGECs) in vitro. In the diabetic mice, hyperglycemia caused aggravated nephropathy and GEC apoptosis accompanied by significantly increased expression of swiprosin-1, a potentally pro-apoptotic protein. Administration of LY333531 (1 mg·kg-1·d-1 for 8 weeks) significantly attenuated both GEC apoptosis and swiprosin-1 upregulation in the diabetic mice. Similar results were observed in high glucose- or PMA-treated HRGECs in vitro. The pro-apoptotic role of swiprosin-1 was further examined using HRGECs treated with lentivirus mediating RNA interference or over-expression and swiprosin-1-knockout mice. Over-expression of swiprosin-1 in HRGECs resulted in increases in apoptosis and in caspase-9, caspase-3 and Bax expression. In contrast, knockdown of swiprosin-1 attenuated high glucose- or PMA-induced HRGECs apoptosis. Furthermore, over-expression of swiprosin-1 promoted interaction between swiprosin-1 and caspase-9 and increased the formation of apoptosomes. In diabetic swiprosin-1-/- mice, the kidney/body weight, urinary albumin, glomerular hypertrophy, mitochondrial apoptotic-associated proteins and GEC apoptosis were significantly attenuated as compared with those in diabetic swiprosin-1+/+ mice. These results demonstrate that swiprosin-1 is up-regulated by PKCß in the early stage of DN, and that PKCß facilitates GEC apoptosis through the mitochondrial-dependent pathway.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Nefropatias Diabéticas/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Glomérulos Renais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Estreptozocina , Relação Estrutura-Atividade
19.
Sci Rep ; 7: 40986, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128226

RESUMO

Susceptibility to motion sickness (MS) varies considerably among humans. However, the cause of such variation is unclear. Here, we used a classical genetic approach to obtain mouse strains highly sensitive and resistant to MS (SMS and RMS). Proteomics analysis revealed substantially lower swiprosin-1 expression in SMS mouse brains. Inducing MS via rotary stimulation decreased swiprosin-1 in the mouse brains. Swiprosin-1 knockout mice were much more sensitive to motion disturbance. Immunohistochemistry revealed strong swiprosin-1 expression in the vestibular nuclei (VN). Over-expressing swiprosin-1 in the VN of SMS mice decreased MS susceptibility. Down-regulating swiprosin-1 in the VN of RMS mice by RNAi increased MS susceptibility. Additional in vivo experiments revealed decreased swiprosin-1 expression by glutamate via the NMDA receptor. Glutamate increased neuronal excitability in SMS or swiprosin-1 knockout mice more prominently than in RMS or wild-type mice. These results indicate that swiprosin-1 in the VN is a critical determinant of the susceptibility to MS.


Assuntos
Proteínas de Ligação ao Cálcio/análise , Enjoo devido ao Movimento/patologia , Núcleos Vestibulares/patologia , Animais , Proteínas de Ligação ao Cálcio/genética , Imuno-Histoquímica , Camundongos Knockout , Proteômica
20.
Eur J Pharmacol ; 798: 1-8, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28132912

RESUMO

Stroke is a leading cause of mortality and disability worldwide. There is growing evidence that metformin (Met) has potent neuroprotective effects; however, its mechanisms remain unclear. We examined the role of the arterial baroreflex and cholinergic-α7 nicotinic acetylcholine receptor (α7nAChR) anti-inflammory pathway in the beneficial effects of Met against stroke. Stroke-prone spontaneously hypertensive rats (SHRSP) were used to observe stroke development indicated by lifespan of SHRSP and the ischemic injury induced by permanent middle cerebral artery occlusion (MCAO). Sinoaortic denervation was used to inactivate the arterial baroreflex. MCAO were also performed in α7nAChR knockout (KO) mice. Briefly, Met increased the life span of SHRSP and reduced the infarct area induced by MCAO. Met also improved the function of arterial baroreflex. The beneficial effects of Met on stroke were markedly attenuated by blunting the arterial baroreflex. Met up-regulated the expression of vesicular acetylcholine transporter (VAChT) and α7nAChR, down-regulated the level of pro-inflammtory cytokines in serum and peri-infarct of ischemic brain. Arterial baroreflex dysfunction decreased the expression of VAchT and α7nAChR, showed upward tendency in the level of pro-inflammtory cytokines. Most importantly, arterial baroreflex dysfunction nearly abolished such effect of Met on cholinergic signaling. In addition, the α7nAChR KO mice also had significantly worse ischemic damage induced by MCAO, and neuroprotection of Met disappeared in α7nAChR KO mice. In conclusion, Met improved the arterial baroreflex function, and then enhancing cholinergic anti-inflammatory pathway in an α7nAChR-dependent manner, thereby effectively prevent ischemic induced brain injury and delayed stroke onset in SHRSP.


Assuntos
Artérias/efeitos dos fármacos , Barorreflexo/efeitos dos fármacos , Metformina/farmacologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/fisiopatologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Artérias/fisiopatologia , Isquemia Encefálica/complicações , Citocinas/sangue , Suscetibilidade a Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Masculino , Camundongos , Ratos , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/deficiência , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...